Darrell Hal Smith
1641 7th Ave.
Longview, WA 98632
(206) 423-9957

December 13, 1991

Mr. Richard Kratch

1201 3rd Ave.

Rm. 3100

Seattle, WA. 98101-3079

cc: Dennis Lodge (415) 543-2300
Bill Richards (206) 448-8070
Byron Akihido (206) 464-2352

(Attny)
(Seattle P-I)
(Seattle Times)

Dear Mr. Kratch:

‘Enclosed with this cover letter is a report, written per your

request, summarizing a major software design flaw in an
electronic subsystem common to the Boeing 747-400 and 767 series
aircraft. This report is recollected from my work as a member of
the Boeing software verification team that analyzed the
subsystem’s software. Specifically, it is a summary of Boeing
coordination sheet B-E32T-C90-012, which was used to notify the
vender (Eldec Corp. of Bothell, WA) of design flaws and
subsequent data contamination problems (documented in PSEU
problem reports 8-569-258 through 8-569-261) on operational
aircraft that needed to be corrected.

This subsystem is the proximity switch electronics unit (PSEU),
which transmits the status of various components -- landing gear,
flaps, etc., (and, to my recollection, auto-restow) to other
subsystems. These other subsystems include those controlling
aircraft braking, thrust reversers, etc.

Note that the specific problems were corrected for internal data
contamination problems, but possible global data contamination
problems were not corrected (other systems could get erroneous
information) and the major architectual problems that created
these specific instances were not corrected. Other such problems
could exist undetected and could be introduced any time the
software is revised due to the major architectual problems.

Sincerely,

Dot H & T

Darrell H. Smith

Encl: PSEU Software Structural Faults Report
' - Certificate showing team members and subsystems worked on
B-E32T-C90-012 Coordination sheet

Copyright (© 1991 Darrell Hal Smith Page 1

PSEU SOFTWARE STRUCTURAL FAULTS REPORT

Introduction

This report is a recollected summary of Boeing coordination
sheet B-E32T-C90-012, which details major software design
inadequacies in the proximity switch electronics unit (PSEU)
subsystem.

In August, 1989, I joined the software support team of Boeing
Commercial Airplanes, in Everett, WA., assigned to verify the
software design of the PSEU subsystem for the 747-400 and 767
series aircraft. The PSEU software was written by the Eldec
Corp. in Bothell, WA. for the Boeing Company. This software was
already installed in the aircraft and had been under review for a
considerable length of time before I joined the team.

After a few weeks of inspection, I discovered that the
software design was grossly inadequate and had a basic
architectural flaw that could cause false information to be
reported to other subsystems that relied on the information for
correct operation. It was also conceivable that the subsystem
could "crash" - software slang for a catastrophic event
characterized by processor lockup (non-operation), crazed
operation, or false operation.

Problem Statement

The reason for the problem was that the microprocessor being
used in the subsystem utilized sophisticated and complicated
mechanisms for sharing its memory amongst the various parts of
the software. It was very apparent that the vendor’s design
engineers, as well as the previous Boeing engineers verifying the
design, lacked sufficient experience and knowledge to understand
and utilize this particular microprocessor. As a result, the
processor’s built~in random access memory (register memory) could
be contaminated. This could cause a subsystem "crash" or false
information about the status of equipment, such as landing gear,
flap placement, or auto-restow could be sent to other systems on
the aircraft.

To me, it was particularly conceivable that other aircraft
systems could be led to believe that the landing gear were down
in flight when they actually were not. If such false information
was supplied at a high airspeed, it was conceivable that other
systems would take action to slow airspeed, since landing gear
deployment at high speeds could cause flight problems. At this
time, I thought perhaps the auto-throttle would kick in. But, it
is also conceivable that the reverse thrusters could kick in -
especially if the design of these subsystems was as poorly
implemented as the PSEU.

Copyright @& 1991 Darrell Hal Smith Page 2

Another possibility is that software controlling the
auto-thrusters, relying on false information indicating that the
landing gear were down, might switch to a ground speed control
mode check, see that the aircraft was going too fast, and kick in
the reverse thrusters - while the alrcraft was really in flight.
Also, if indeed this system reports information about auto-restow
or controls auto-restow, thrust reverser operation could be
critically impacted.

Boeing and FAA Reluctance to Investigate the Problem

I was going to include these concerns in a report, but the
project engineer, William Whitton, who is also the FAA’s
designated engineering representative (DER), said he would not
allow it. He said the PSEU is a non-critical system (thrust
reversers were thought to have little impact on flight
stability). The software support manager, Tim Hendrickson,
supported my efforts and called for further investigation with
other staff members. As a result of these efforts, four
instances of design flaws in operating aircraft attributable to
my findings substantiated my concerns. A diluted report focusing
on technical problems within the PSEU only was allowed to be
reported - WITHOUT ALIOWING US TO REPORT ABOUT POSSIBLE
CONSEQUENCES TO OTHER SUBSYSTEM BEHAVIOR. '

The report that was submitted was B-E32T-C90-012. Also,
after examining a few other software subsystems, I noticed a
common theme underlying the 747-400 software: the designs looked
hastily contrived by inexperienced software engineers. My
professional opinion is that time and money factors have
overridden safety concerns in the software of 747-400 subsystems.

Problem Characteristics and Correct Design Architecture

Operational errors in f£light, due to the nature of the
problems I detected, would be random and often non-repeatable
prablems that are particularly hard to isolate in test laboratory
environments. And, in fact, error reports from aircraft did show
a history of such seemingly random errors, many of which were
eventually classified as single event anomalies and never
corrected,

Such problems can usually be eliminated only be careful
design procedures, which seem to be lacking in the application of
software design for the 747-400. Design applications that
grossly disregarded Boeing software design specifications calling
for careful design procedures were placed in operational
aircraft. Seven such violations were reported in B~E32T-C90-12.

This disregard to public safety and pressure from project
engineers and managers to overlook problems was part of the
reason I chose to terminate my relationship with the Boeing
Company, in June 1990, after I had fulfilled a one-year
employment obligation.

Copyright (& 1991 Darrell Hal Smith Page 3

Summary of B-~E32T-C90-012

This coordination sheet describes three subtasks: investigate
how the microprocessor manufacturer intended the device’s memory
be utilized, how the software vendor actually utilized the
memory, and identify problems with the vendor’s utilization.

The findings of these tasks indicated that the vendor’s
design is grossly inadequate and is in violation of several
Boeing software standards. Several possible mechanisms that can
cause errors were identified, and four specific occurrences of
these mechanisms were causing errors in aircraft operation, which
substantiated the concerns.

The recommendations to correct the problems were that the
software design should be rewritten to comply with Boeing
standards and that the management of the processor’s memory be
included as a separate design item with formal design, code, and
verification processes. It had been totally ignored and was not
under any design control.

The four specific error problems were corrected for problems
within the PSEU - but ignored for problems the PSEU could cause
with other subsystems (such as thrust reverser activation), even
though B-E32T-C90-012 advised Boeing and Eldec about the concern.
The report identifies these problems, lists 7 violations of
Boeing software standards that are universal throughout the
design, describes how the processors memory was intended to be
used by the manufacturer (INTEL), describes the type of things
that would cause problems, and lists the design characteristics
in the PSEU that match these descriptions. The main problem
being that memory could be corrupted as various activities are
interrupted during real-time (in flight) activity. The more
things going on, the greater chance for false data at random.

In B-E32T-C90-012, it was noted in bold and underlined:
"NOTE: THIS PROBLEM WITH REGISTER MEMORY UTILIZATION IS A VERY
REAL AND SERJIOUS IMPEDIMENT TO THE CORRECT OPERATION OF THE PSEU
FOR BOTH CURRENT AND FUTURE RELEASES." The only really adequate
solution was a redesign with competent engineers.

T

June 1990
CERTIFICATE OF QUTSTANDING PERFORMANCE
PRESENTED TO

EDWARD CUMMINGS VALARIE JENSEN LAWRENCE POIRIER
LYNETTE CURRIER JAMES KENNY MANUEL SANTOS
MICHAEL DELK LYNN LABONTE JULE SCOTT
FRANCOIS DESPLANCHES ED MARVIN DERRELL SMITH
DENIS GUNDERSON REZA MINAE! KiM STINDT
DONALD HAM KENNETH MORGAN ROYLE WELLS
GEORGE HAMASAKT TERENCE OLSON WILLIAM WHITTON
PHILLIP PHUNG

THIS CERTIFICATE]S PRESENTED TO YOU IN RECOGNITION OF YOUR OUTSTANDING WORK
PERFORMANCE, PROFESSIONALISM AND DEDICATION ON THE 747-400 PROGRAM. YOU WERE
ASKED -TO GO ABOVE AND BEYOND THE CALL OF DUTY, WHICH YOU DID WITHOUT
HESITATION. THIS WAS ACCOMPLISHED WHILE ALSO SUPPORTING 747 AND 767 SUS TAINING
TASKS.

YOUR ROLE IN DEVELOPMENT OF THE 747-400 INCLUDED THE FOLLOWING SYSTEMS:

* TIRE PRESSURE INDICATION SYSTEM

* PROXIMITY SWITCH ELECTRONICS

* BRAKE SYSTEM CONTROL

* RUDDER TRIM CONTROL

" BRAKE TEMPERATURE INDICATION

" HYDRAULIC CONTROL/INDICATION

* PRIMARY FLIGHT CONTROL SURFACE INDICATION

OTHER ACTIVITIES INCLUDED DEVELOPMENT OF SCHEMATICS, DIAGRAMS AND FUNCTIONAL
TESTS; VENDOR COORDINATION; VERIFICATION/VALIDATION TESTING, ELECTRICAL
ANALYSIS AND CERTIFICATION; SOFTWARE ENGINEERING SUPPORT; AND AIRPLANE
TROUBLE-SHOOTING FOR THE FACTORY AND FLIGHT LINE.

PLEASE ACCEPT OUR GRATITUDE AND APPRECIATION FOR A JOB WELL DONE.

L) . LH

A- MGPHERSON R. W.SUTTON ™
ELECTRICAL POWER ELECTRICAL SYSTEMS
SUPERVISOR MANAGER

p . .
S. M. HATCH [ZR A DGVIS
CHIEF DESIGN ENGINEER DIRECTOR OF ENGRG.

ELECTRICAL SYSTEMS EVERETT DIVISION

PRIDE IN EXCELLENCE

COORDINATION BHEET

B~E32T-C90-012
March 5, 1990

TO: J.J. McPherson B-G16T 0T-07
ce: D.P. Gunderson B-G16T 0T-07
W.S. Whitton B~G16T OT-07

3 Enclosures.

SUBJECT: PSEU 8096 Register Memory Use

Purpose:‘

The purpose of this portion of Task 24, 8097 Register
Overlay Analysis, was to see how register memory usage is
controlled by Intel software utilities, determine how the
PSEU software utilizes these controls, and identify any
problems with this utilization.

Summary of Findings:

The PSEU software design is grossly inadequate in addressing
the utilization and management of on-chip register memory.
The design is in violation of several Boeing software :
standards. Several possible mechanisms that can cause
errors to be introduced in the software implementation were
identified. Four specific instances of software errors

Recommendations:
fecommendationg

Register nmemory use, especially the overlayable segment
(OSEG), is a separate architecture in itself. 1t should be
a8 separate design item with formal design, code, and
verification processes, Consequently, the software
architecture must be enhanced to correct the deficiency.
This can be accomplished in two phases.

During the first phase, for the clean up of the Version 5
documentation, a description of the architecture and
utilization of the register memory should be added to the
SWDD. The rationale and techniques for assembling,
compiling, and linking with register memory should also be
added to the SWID (see the enclosed "PSEU Vicolation of
Boeing Software Standards" for specific requirements of what
the documentation requires).

During the second phase, for the next part number roll,
register memory overlay usage should be completely
reevaluated. The requirement to use it should be challenged
and approved at the CDR. Boeing would provide a standard
for designing software with register memory overlay,
including architectural requirements, design methodologies,
verification, etc. The register memory overlay usage would
be audited for conformance to the standard. Note: to
properly utilize memory overlay would require code and
timing changes in the software. Task 29 has been identified
to determine if the advantages gained by using memory
overlay are outweighed by the penalties its usage causes.

Method:

The first step was to analyze Intel documentation and
generate a document providing a comprehensive description of
assembler, PIM compiler, and linker controls that effect
register memory (see the enclosed "MCS96 Register Memory
Controls Summary"). <

The second step was to identify any possible problems
associated with utilizing and managing register memory,
including special design constraints and possible error
mechanisms (see the enclosed document, "PSEU Register Memory
Problem Description"). This document also recommends three
alternative approaches to develop a structured discipline
for PSEU software register memory use.

The third step was to analyze the software, looking for
specific error instances. During this phase it was
determined that the software design of the PSEU inadequately
addresses the utilization and management of on-chip register
memory and is in violation of several Boeing software
standards (see the enclosed "PSEU Violations of Boeing
Software Standards").

\":‘i“

As part of the third step, independent analysis performed by
Lynnette Courier, resulting in the discovery of four
specific errors in the software causing data contamination
problems, substantiated these concerns (see PSEU problem
reports 8-569-258 through 8-569-261). A concern for
possible data contamination has been identified. Five
modules, spn, spn_direct, sgn, sgn_direct, and srs, define
local absolute variables that encompass the same address
space as srf_buffer, a 4 byte global array with a starting
address of FCH. As the software now stands, the local
variables cannot be contaminsted. Tt might be possible,
though, for the local modules to contaminate the global
variable. This concern should be transmitted to Eldec.

Prepared by Concurred by
D. H. Smith R. E. Wells
B-E32T 07T-23 B-E32T 0T-23

Ph 266-6520 Ph 342-6606

Concurred by
T. W. Hendrickson
B-E32T 0T-23
Ph 342-9697

PSEU Violations of Boeing SBoftware Standara
D6-35071-1

p 17, section 1.1 : "Goals of the standard are to ensure
software with good design, uniformity in development and
production, and documentation visibility".

Register memory architecture and utilization is not visible
in the documentation. It needs to be a separate design item
to provide visibility.

P 29, section 2.3.6 : "A memory map of the software shall be
developed to provide memory organization visibility and to
assist in debug and test operations".

A memory map of register memory, particularly overlay
segments and variables, is not provided.

P 33, section 2.5.1.f : "Special design constraints. All
constraints imposed by unique demands of the function shall
be identified".

Functional descriptions do not include details of register
memory use by the function.

P 39, section 2.7 : "The SWID shall include the following
elements, as a minimum: ... '

c. Assembly/compilation procedures.
d. Link/edit procedures.
e. Load map."

These items do not address the aspects of register memory
utilization. ' : :

D6~35071-2

P 20, section 5.1.b : "pescribe any conventions established
to avoid problems associated with the following, if

applicable, to the component being described: ... (5) shared
data..."

Overlayable memory dis by its vary nature, shared data, and
since it is, conventions to avoid problems associated with
its utilization shall be described in the SWDD.

p 21, section 6.1 : Module descriptions: " Specify
implementation constraints (e.g., memory usage, time
requirements, etc.). :

Details of fast RAM utilization including implementation
constraints (i.e., fast RAM controls and reasons for use,
data mapping, etc) shall be included in module descriptions.

P 27, section 4.2 : SWID Implementation Procedures: "Link
Edit Procedure. This section provides detailed instructions
for linking modules comprising the program into an
executable program. Required command files and command
streams shall be identified."

Details of fast RAM utilization including linkage controls
and call hierarchies shall be included in the SWID.

PSEU Register Memory Problem Description

1.0 Overview.

The 8096 CPU contains high speed on-chip RAM called Register
Memory. Because this memory is of limited size, the Intel
software development environment allows variables from
different procedures and even variables from different
blocks within a procedure to be assigned to the same memory
location within this RAM (Register Overlay).

The use of Register Memory requires highly disciplined
design, coding, and verification processes to prevent data
corruption because the linker, assembler, and PLM compiler
controls that effect register memory provide a high degree
of flexibility. A disciplined structure must be provided
for designing with register memory and to provide assistance
for the analysis of the PSEU software. '

1.1 Applicable Documents.
"MCS96 Register Memory Controls Summary" (attached).
1.2 Register Memory Utilization as an Architecture.

Register Memory use, especially the Overlayable Segment
(OSEG), is a separate architecture in itself. It should be
a separate design item with formal design, code, and
verification processes - under control. Command directive
files for assemblers, compilers, and linkers should also be
in this formal process to guarantee compliance and
reliability. This includes memory management directives
such as that for overlayable registers {(e.g., call
hierarchies). Each particular logical substructure should
be a separate entity in the process (e.g., program memoxy
architecture, RSEG architecture, OSEG architecture, stack
architecture, etc.)

1.3 Development Environment Problems.

Assembler controls are simple, providing a solid,
maintainable platform. The PLM Compiler, however, because
it tries to overlay as much as possible without having much
knowledge about modules outside of the one being compiled,
has complex controls, making the situation complicated and
more susceptible to errors. Complicating this further, the
linker will not allow overlaying unless the REGOVERLAY
control is specified, which causes the compiler to overlay
all such modules unless a call relationship can show that
particular modules should not be overlaid. The call
relationship is in itself complicated, showing relationships
explicitly and by deduction. Call relationships parallel
the actual code design and are supposed to be specified
during design and never changed there after.

2.0 Perceived Problems.
2,1 Interrupts.

The most salient error mechanism is that an interrupt
routine may call a procedure (directly or indirectly) that
accesses a variable overlaid with another variable from a
routine suspended by the interrupt request. Software
operation, by analegy, becoming a game of Russian roulette
with the possibility of critical data being corrupted in a
non-repeatable, non-traceable fashion (i.e., at random) .

2.3 Sneaky Calls,

Sneaky calls (variable calls, lookup table calls, pseudo
multi-tasking, etc) are undocumented as far as the compiler
and linker are concerned and cannot be used by either to
establish a call relationship unless explicitly defined.
These are hard to document and control, even when an attempt

is made to do so. Sneaky calls abound in the software as it
exists.

2.4 Mixing Assembler and PLM.

Mixing these two languages within one software pProgram
increases the potential tremendously for one of the above
mechanisms to cause a problem. This is especially so if the
use ‘'of the two languages at a procedure and module basis is
not structured according to sound software discipline with-
appropriate documentation.

2.5 Libraries.

Procedures in library modules, including intrinsics, must
have been compiled as REENTRANT in order to prevent overlay.

3.0 Recommendations.

Three alternative approaches to develop a structured
discipline for PSEU software Register Memory usage can be
perceived. These alternatives are as follows:

3.1 Pure Standard Approach.

The Pure Standard Approach would entail Boeing providing a
standard for designing software with Register Memory,
including architectural requirements, design methodologies,
verification, etc. The burden would then be on the vendor
to insure that the product conforms to this standard. This
is the most comprehensive and desirable approach. It would
have the most up front cost impact on the PSEU software but
would be the most effectual for long term development and
verification processes.

3.2 Conformed S8tandard Approach.

The Conformed Standard Approach is identical to the Pure
Standard Approach except that the standard would be written
to conform to discerned PSEU software methodologies in
place. This would have the positive impact of reducing up
front costs but could adversely effect the utility of the
standard in regards to achieving the goal of having
resultant software operate correctly.

3.3. Apologetic Approach.

The Apologetic Approach would require the vendor to provide
after-the~fact documentation detailing the requirements,
design, and implementation of all aspects of the software
which involve Register Memory. This would include
philosophies (for lack of a better term) of use, guidelines,
architecture of Register Memory variables, memory maps,
utility designs and operation (linker, loader). Boeing
would then review and critique this and the vendor would
respond to the critique.

This approach has many critical drawbacks, the major being
that without a standard to work with, the documentation
cannot be effectively critiqued. It would also give too
much discretion to the vendor and make it very hard to get
required changes to obtain a software product that works
correctly. NOTE: THIS PROBLEM WITH REGISTER MEMORY
UTILIZATION I8 A VERY REAL AND BEERIOUS IMPEDIMENT TO THE

CORRECT OPERATION OF THE PSEU FOR BOTH CURRENT AND FUTURE

RELEASES. v

MCE896 Register Memory Controls Summary

1.0 Overview.

1.1 Applicable Manuals.

Intel "ASM96 / R & Lv manual which includes "Mcg-gg Macro
Assembler Users Guide for DOS Systems" and "MCS-96 Utilities
Users Guide for DoOs Systems",

Intel "PL/M-96 Users Guide".
1.2 Register Memory.

Register Memory is RAM memory located within the 8097, hence
it is faster to access than external memery, yet is of
limited size. Register segments are portions of this
memory, of which there are two types, the non-overlayable
Register Segment (RBEG), and the Overlayable Register
S8egment (OSEG).

1.3 Register and Segment Overlay.

The OSEG is provided to overcome size limitations by
allowing variables from brocedures that are not
simultaneously active to be ‘assigned to the same memory
location (Register Overlay). At the linker level, this is
implemented by overlaying the OSEG of individual modules
(Segment Overlay).

1.4 Overlay Criteria.

simultaneously with a pProcedure in the other (e.g., direct
or indirect calls, interrupts).

The linker, being the last processing stage, has final
overlay authority. It will not overlay a module unless the
REGOVERLAY control is specified. Then it will overlay all
such modules unless a calls relationship shows that
particular modules should not be overlaid. .The linker
produces an executable program containing a single absolute
module merging all input modules (including libraries).

2.0 ASM96 Assembler.

The RSEG and OSEG assembler directives are used to assign
variables to the non-overlayable and overlayable register
segments, respectively, by placing variable declarations
after the appropriate directive.

3.0 PLM96 Compiler.

The compiler looks only at the module being compiled. If an
item is not declared PUBLIC or EXTERNAY, its scope is
limited to the module it's declared in. .

3.1 Register Memory Variable Declarations.

Variables may be explicitly declared either FAST or S8LOW to.
be permanently placed in or outside Register Memory,
respectively. Global variables and fast variables are
statically allocated, non-fast procedure variables are
dynamically allocated on the stack, which achieves greatest
possible compression of non-fast memory reguirements.

If space remains after allocating all FAST variables, the
compiler chooses more-often repeated variables declared
without either suffix and places them in Register Memory.

To insure that a variable is not placed in Register Memory,
explicitly declare it SLOW. The FAST/SLOW suffix may not be
specified for based variables, nor with the AT or DATA
attributes.

3.2 Compiler Controls for Register Memory.
3.2.1 Enable Register Overlay (REGOVERLAY) .
REGOVERLAY DEFAULT: NOREGOVERLAY

To enable or inhibit overlaying FAST variables from
different procedures, use the REGOVERLAY or NOREGOVERLAY
controls, respectively. These form a primary compiler
control which can be specified once within a module and
cannot be changed.

3.2.2 Specify Number of Fast Registers (FAST).
FABT(0 -~ 220) DEFAULT: FAST (ALL)

To specify the number of Fast Registers used for an
application, use the FasT() primary compiler control.

To specify that the entire application uses Register Memory,
use FAST(ALL). The compiler then agsumes that alil
variables, including EXTERNAL variables, are FAST.

If FAST(ALL) is not specifiea, any EXTERNAL variable not
explicitly declared FAST EXTERNAIL is assumed not to be rasT.
Beware, an EXTERNAL SILOW can match a PUBLIC FAST; however,
the reverse causes a link-time error.

3.3 Compiler Overlay Criteria.

The compiler tries to overlay as much as possible (e.qg.,

variables of disjoint DO blocks are always overlaid: the

compiler tries to overlay any pair of procedures that can
never be active simultaneously).

But, the main problem with overlaying is for the compiler to .
know which procedures might be active simultaneously. Since

cannot efficiently determine what other modules are doing,
it ignores possible sneaky calls by assuming that they do
not exist. If the CALL's do occur, errors may be
introduced.

For this reason, if calls possibly occur outside the module,
the compiler expects Procedures to be declared
INDIRECTLY_CALLABLE or INTERRUPT_CALLABLE.

3.4 Procedure Declarations.
3.4.1 Without Fast Vvariables (REENTRANT).

A procedure that cannot have FAST variables must be declared
REENTRANT. All variables will be SLOW (affecting stack
size)}, no variable may be declared FAST. Procedures that
must be declared REENTRANT include: any procedure that may
be interrupted and that is also activated from an interrupt
procedure (including interrupting an interrupt procedure);
any procedure that calls itself (direct recursion); any
procedure that calls itself through an intermediary call
(indirect recursion). .

3.4.2 Without Overlaying (INTERRUPT CALLABLE).

A procedure that cannot be overlaid must be declared
INTERRUPT CALLABLE. Any procedure called (directly or
indirectly) from an interrupt procedure in another module
should be declared INTERRUPT_ CALLABLE. These procedures can
only be PUBLIC or procedures at the module level whose
address is taken (any other case causes a compilation
warning).

3.4.3 Overlaying Oniy by Non-calling Procedures
{INDIRECTLY CALLABLE).

A procedure that will not be overlaid with procedures that

may call it is declared INDIRECTLY CALLABLE. No procedures
"~ that call external procedures or make indirect calls will be
allowed to overlay it. Any procedure that may be called in
sneaky ways should be declared INDIRECTLY CALLABLE. These
procedures can only be PUBLIC or procedures at the module
level whose address is taken (any other case causes a
compilation warning).

3.4.4 Interrupt Procedures.

Interrupt service procedures are declared with INTERRUPT N.
These procedures must be untyped without arguments. They
may be declared PUBLIC, INDIRECTLY CALLABLE, ‘
INTERRUPT_CALLABLE, and/or REENTRANT.

4.0 RL96 Linker.
4.1 Linker Overlay Criteria

The linker will not overlay a module unless the REGOVERLAY
control is specified with that module. Modules so specified
will then be overlaid with all other specified modules
unless a "calls" relationship can show that particular
modules should not be overlajid with each other. RIL96
controls are entered on the RL96 invocation line and may be
plural, separated by blanks.

4.2 Order of Allocation.

1) All absolute segments.

2) Relocatable OSEG of modules specified by
REGOVERLAY.

3) Relocatable RSEG and OSEG not yet allocated.

4) Relocatable CODE, DATA, etc.

4.3 Request Register overlay (REGOVERLAY) ,
REGOVEﬁLAY(Overlay_Term[,...]) DEFAULT: NOREGOVERLAY

Abbreviation: ov/Noov

The RL96 linker control REGOVERLAY specifies that overlaying
is desired, which modules are to be considered for
overlaying, and the constraints to apply. The request to
overlay any two modules may be fully granted, partially
granted, or not granted at all. A request not to overlay
two modules or a request for no overlaying (i.e.,
NOREGOVERLAY) is fully honored.

In the REGOVERLAY control, the "calls" relationship
disallows overlaying particular modules. If a module is
specified without a calls relationship, the linker assumes
that the module can be overlaid with any other specified
module. If a relationship between two modules jis not
distinctly specified, or cannot be deduced (by
transitivity), RLY96 assumes that those modules can be
overlaid. The Linker can be fooled, especially by indirect
address calls.

5.0 PLM / Assembler Interface.

PLM96 uses the eight byte registers and addresses 1CH~23H
for temporary computations. The library PLM96.LIB defines
(as needed) the public symbol PLMSREG which is used to
return function results. If a procedure has both SIOW and
FAST arguments, place all FAST arguments at the end of the
argument list, to avoid stack use.

The easiest way to ensure compatibility between assembler
and PIM is simply to write dummy procedures in PIM with the
same argument list as the desired assembly subroutine and
with the same attributes. Compiling with the CODE control
produces a pseudoassembly listing which may be copied as the
prologue and epilogue of the assembly subroutine.

5.1 Procedure Prologues.
interrupt routine:

pushf

push PLMS$REG
push PLMS$REGH+2
push PLMSREG+4
push PIM$SREG+6

procedure with FAST variables:

pop PLMS$REG
Pop parm n

Pop parm2
pop parml
push PLMSREG
procedure with local SLOW variables continues with:
sub sp, #total size of local SILOW variables,
5.1 Procedure Epilogues.
noninterrupt routine with no '‘SLoOW parameters:
ret
if SLOW parameters or variables are present:
ld PLMSREG+6, size of slow variables [SP]
add sp,#size of all parameters, variables,

and return address on the stack
br [PLM$REG+6]

e
. AR iy & L 1A
9SO 912345 v
...-*W&u&;ﬂ.\l St ...ﬁr..w f -
L Bk DY TN
HASE \72g10~ ¢
5382 |HA2,
A5V npa0093
?uéuwﬁu
0359 SJITLLE F TN
asy isvg |2 asvd
‘ - Horov H
(wunmia) 3~ |$Wers 15y
IV #9723 PIFON B ._.om
Crwwnta) ‘.T.ﬂ.c_qu
NIPLS e B LY
: Iyvls o3
PITIR S vy -ﬂv.-.u Qkﬂd asyd ﬂﬁvkﬂqu
(>rwoned) CEZTTR I BAS
. 43V yops 92y ssva| e
SIIPYITPO JUr0IIOVUY NAMILINASy. :
Y TEIF PV T M T T EECF = o A 3} 313 v - 01213345 wn ~QT8 1Sy MOIIYIOY
Jsv= asx sz A 3Vgs 1svd
. 45V “as Honown g .f:*
ey 037 ~67% WYs ASva
13133 Jg s o 1113 Gz uoud
7450 | 42 fpwiasn| qase | usva 00/ sase | 99s¥ | (myuses
AS¥F | JeIeA | 4SV2 | Leuz | Ferd . _ el i
/ EALEF] AL
LSV Q9993 |9P3sA (e 1spa |48
ke 14 T -~ S TIBI3 v 213 1Sy 11313122550 mal s 1S¥ 2 |vonwdo- _
iZ21r5 A a]
o312 Ad S vy 2179nd MygnPALL A RIYH T

SarPpvIPV DR

R2INPAsoFrS — Qv

N\

-

D MILDBIDY

S20ID3NT W ig

S

